Conditions Implying Regularity of the Three Dimensional Navier-stokes Equation

نویسنده

  • STEPHEN MONTGOMERY-SMITH
چکیده

We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac like inequalities. As part of the our methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Condition Implying Regularity of the Three Dimensional Navier-stokes Equation

Abstract. This paper presents a logarithmic improvement to the usual Prodi-Serrin conditions. After this paper was written and widely dispersed, the author realised that there is a much simpler and more standard proof of the main result. This paper (which is now a draft) first presents the simpler proof, and then presents the original more complicated proof. It is shown that if u is the solutio...

متن کامل

Global Regularity of the Navier-Stokes Equation on Thin Three Dimensional Domains with Periodic Boundary Conditions

This paper gives another version of results due to Raugel and Sell, and similar results due to Moise, Temam and Ziane, that state the following: the solution of the Navier-Stokes equation on a thin three dimensional domain with periodic boundary conditions has global regularity, as long as there is some control on the size of the initial data and the forcing term, where the control is larger th...

متن کامل

Sufficient Conditions for the Regularity to the 3d Navier–stokes Equations

In this paper we consider the three–dimensional Navier–Stokes equations subject to periodic boundary conditions or in the whole space. We provide sufficient conditions, in terms of one direction derivative of the velocity field, namely, uz , for the regularity of strong solutions to the three-dimensional Navier–Stokes equations.

متن کامل

On the regularity of the axisymmetric solutions of the Navier-Stokes equations

Weobtain improved regularity criteria for the axisymmetricweak solutions of the three dimensional Navier-Stokes equations with nonzero swirl. In particular we prove that the integrability of single component of vorticity or velocity fields, in terms of norms with zero scaling dimension give sufficient conditions for the regularity of weak solutions. To obtain these criteria we derive new a prio...

متن کامل

On the Energy Spectrum for Weak Solutions of the Navier-stokes Equations

We consider the decay at high wavenumbers of the energy spectrum for weak solutions to the three-dimensional forced Navier-Stokes equation in the whole space. We observe that known regularity criteria imply that solutions are regular if the energy density decays at a sufficiently fast rate. This result applies also to a class of solutions with infinite global energy by localizing the Navier-Sto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004